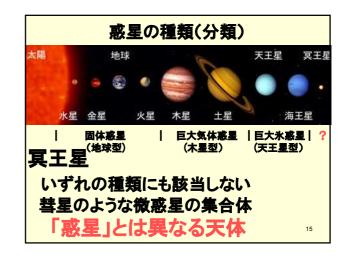
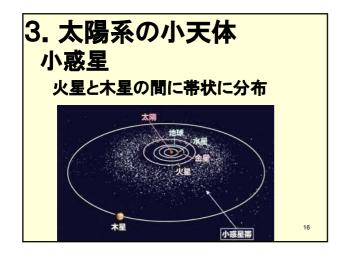


近代科学: 観測事実にもとづく理解
コペルニクス
地動説(1543)
ガリレイ(1609) 惑星の望遠鏡観測
惑星の実体: 地球のような天体
ケプラーの法則(1609-18) 惑星運動の法則
太陽系運動の実体の解明
ニュートン力学(1666-87)
太陽系運動の本質的の理解


軌道の特異性

- ・海王星より内側に入る
- ・軌道面が大きく傾いている
- ・軌道がかなり楕円


他の惑星とは起源が異なる?


発見当初から指摘もあったが、 詳しい研究が進まなかった

12

			形	星表				
名称	軌道半径					_		
	地球=1	光速で 時 分	軌道 傾斜 (度)	赤道半径 (km)	黄量 (地球=1)	密度(比重)	教	組成
水里	0. 4	3	7	0. 4	0.06	5	0	日本
全里	0. 7	6	3	1	0.8	5	0	
地球	1.0	8	0	1	1	6	1	
火星	1.5	12	2	0. 5	0. 1	4	2	
木里	5	43	1	11	320	1	63+	気体
土里	10	1 20	2	9	95	0. 7	33+	
天王星	20	2 40	1	4	15	1	27	*
海王星	30	4 11	2	4	17	2	13	
冥王星	40	5 30	17	0, 2	0, 0025	1	3	

大きさ: 0.1?~1000km(冥王星程度) 組 成: 岩石(隕石の起源) 個 数: 約30万個確認 質 量: 総質量<月 起 源: 成り損ね惑星??

彗星

軌道 楕円・双曲線

傾き大

大きさ 50km以下 組成 核(本体): 氷

岩石、有機物の塵を含む

尾:微粒子(塵)、ガス起源

起源 惑星系外の微小天体(原始彗星)

が太陽に近づき蒸発

彗星は太陽系形成の残存物質と考えらる

原始彗星の存在領域

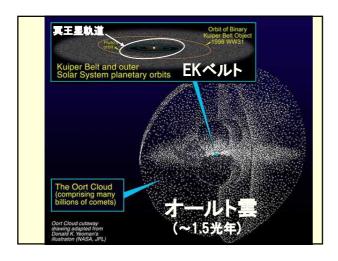
彗星軌道の最遠点から推測(~1950)

エッジワース・カイパーベルト(EKベルト)

惑星系のすぐ外側の帯状領域

直径 惑星系の2~3倍

天体数 数万個

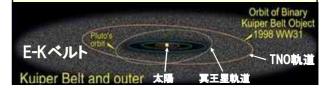

オールトの雲

さらに外側の球状領域

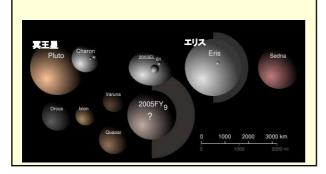
直径 ~1.5光年

天体数 1兆?

19



4. Trans-Neptune-Objectの発見


(TNO:海王星以遠天体)

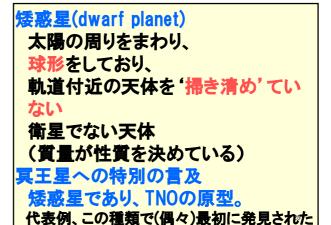
冥王星の外側に天体発見(米、1992) EKベルト内を運動

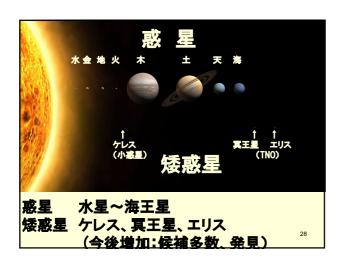
現在までに1000天体以上確認(すべて、米)

冥王星と同程度の天体もふくまれる 冥王星より大きなものも発見(2003)

5. 惑星の定義

"TNOは新惑星"


発見者等のプロパガンダ


VS

"冥王星・TNOは「惑星」とは異質" 学界での認識の定着

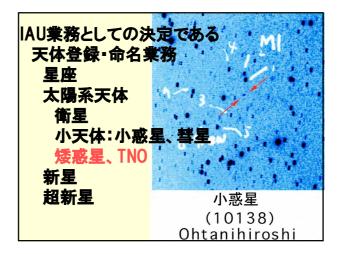
惑星の定義がないため、"混乱"が 生じはじめる

6. 定義決定の問題点

(1)内容

- 分類の境界に曖昧さ 「球形」、「除去」の程度(今後検討の予定)
- ・矮惑星はヘテロジニアス 小惑星とTNOは物理的性質、起源は異質
- ・太陽系外惑星系への拡張性に疑問

30


(2)手続き一多数決

科学的な定義決定にはなじまない (本来は、研究の進歩とともに自ずと 定まる)

科学事項として個人の決議権(出席者約400人)を設定したがアカデミックな方法とは隔たりが残る

(IAU総会は加盟国単位の決議権)

34

- 日本の学界・教育界 推奨訳語の検討 dwarf planet 準惑星 定義の再検討を提唱 教科書などではなるべく使わない Trans-Neptune-Object 外縁天体 planet(漂浪者) 惑星 asteroid (星状)「小惑星」が定着 planetesimal(微惑星)